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Dimension Reduction

Challenge: curse of dimensionality

Solution: dimension reduction

▶ Goal: find a mapping π : Rd → Rm, where m ≪ d

▶ Example: Johnson-Lindenstrauss transform

Dimension reduction in algorithm design

(1) Embed the high-dimensional data to a low-dimensional space:
X ⊂ Rd π7→ π(X) ⊂ Rm

(2) Compute the problem on the low-dimensional data π(X)

(3) Map the solution back to X
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Dimension Reduction

Johnson-Lindenstrauss Lemma [JL84]

There exists a random map π : Rd → Rm for m = O(ε−2 log n),
such that for every n-point set X ⊂ Rd, w.h.p.

∀x, y ∈ X, ∥π(x)− π(y)∥ ∈ (1± ε) ∥x− y∥ .

Good properties: linear, data oblivious

▶ Linear: π : x 7→ 1√
m
Gx (G is the Gaussian matrix)

▶ Data oblivious: many applications in streaming

Limitations: target dimension m = O(ε−2 log n) is tight [LN17]

▶ TSP in RΘ(logn) does not admit a PTAS [Tre00]

▶ Streaming MST in RΘ(logn) requires Ω(
√
n) bits [CCJ+23]
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Doubling Dimension
Going beyond O(ε−2 log n): seek dependence on the intrinsic
dimension of datasets
▶ High ambient dimension vs low intrinsic dimension

▶ Points in a linear subspace
▶ Points with sparse vector representation

▶ Doubling dimension ddim(X) [GKL03]: minimum t ≥ 0, such
that every ball in X can be covered by at most 2t balls of half
the radius
▶ If |X| = n, then ddim(X) ≤ log n

4 / 22



Dimension Reduction Meets Doubling Dimension

Goal: refine JL lemma, such that m = m(ε, ddim(X))?

▶ Remains open

▶ Not possible for linear maps [IN07]

Goal: JL dimension reduction for specific problems, such that
m = m(ε,ddim(X)) and opt(π(X)) ∈ (1± ε)opt(X)

▶ A weaker requirement than preserving pairwise distances
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Dimension Reduction for Specific Problems

Problems Apx. Target Dimension Ref.

Max-Cut 1 + ε Õ(ε−2) CJK23

k-Median/Means 1 + ε O(ε−2 log k) MMR19

k-Subspace Apx. 1 + ε Õ(ε−3k2) CW25

Nearest Neighbor 1 + ε Õ(ε−2ddim) IN07

k-Center Clustering 1 + ε O(ε−2(ddim + log k)) JKS24

MST 1 + ε Õ(ε−2(ddim + log log n)) NSIZ21

UFL O(1) O(ddim) NSIZ21

UFL 1 + ε Õ(ε−2ddim) This work
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Uniform Facility Location (UFL)
Input: n-point set X ⊂ Rd

Objective: find a facility set F ⊂ Rd, to minimize

cost(X,F ) := |F |+
∑
x∈X

dist(x, F )

Optimal value: ufl(X) := minF⊂Rd cost(X,F )

f1
f2

f3

f4

Problem (Dimension reduction for UFL)

Given ε ∈ (0, 1), decide a target dimension m = m(ε, ddim(X)),
such that w.h.p. ufl(π(X)) ∈ (1± ε) ufl(X)
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Main Result: Dimension Reduction

Theorem (Dimension reduction for UFL)

Consider m = Õ(ε−2ddim). Then for every finite X ⊂ Rd with
ddim(X) ≤ ddim,

Pr[ufl(π(X)) ∈ (1± ε) ufl(X)] ≥ 0.99

▶ Improvements over previous results
▶ [NSIZ21]: O(1)-apx, target dimension m = O(ddim)
▶ [MMR19]: (1 + ε)-apx, target dimension m = O(ε−2 log n)

▶ Handles a regime between low and high dimension
▶ Data: low doubling dimension
▶ Facilities: high dimension
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Corollary: Streaming Algorithm

Corollary (Streaming algorithm for UFL)

There is a streaming algorithm that, given as input a set X ⊆ [∆]d

presented as a stream, and an upper bound ddim, uses space
Õ(d · polylog(∆) + (ε−1 log∆)Õ(ddim)) and outputs w.h.p a
(1 + ε)-apx to ufl(X).

▶ The first streaming algorithm for UFL that utilize the
doubling dimension (generalization of [CLMS13])

▶ Break the Ω(
√
n) barrier in [CJK+22]
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Õ(d · polylog(∆) + (ε−1 log∆)Õ(ddim)) and outputs w.h.p a
(1 + ε)-apx to ufl(X).

▶ The first streaming algorithm for UFL that utilize the
doubling dimension (generalization of [CLMS13])

▶ Break the Ω(
√
n) barrier in [CJK+22]

9 / 22



Main Result: PTAS

Theorem (PTAS for UFL)

There exists a randomized algorithm that computes a

(1 + ε)-apprximation for UFL in time (2m
′
d+ 22

m′
) · Õ(n), for

m′ = O
(
ddim(X) · log(ddim(X)/ε)

)

▶ Facilities are allowed to be picked from the ambient space Rd

▶ [CFS21]: PTAS for UFL in time 22
O(ddim2) · d · Õ(n), with

facilities restricted to the dataset
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Technical Overview

Theorem (Dimension reduction for UFL)

Consider m = Õ(ε−2ddim). Then for every finite X ⊂ Rd with
ddim(X) ≤ ddim,

Pr[ufl(π(X)) ∈ (1± ε) ufl(X)] ≥ 0.99

▶ Easy direction: ufl(π(X)) ≤ (1 + ε) ufl(X)
▶ Let F ∗ be the optimal solution for X, then π(F ∗) is a feasible

solution for π(X)
▶ ufl(π(X)) ≤ cost(π(X), π(F ∗)) ≲ cost(X,F ∗) = ufl(X)
▶ Suffices to preserve the cost of one solution

▶ Hard direction: ufl(π(X)) ≥ (1− ε) ufl(X)
▶ Optimal solution F ∗

π for π(X) is random
▶ Need to preserve the cost of all solutions
▶ Idea: metric decomposition
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Technical Overview: Decomposition

Construct a partition Λ for X, s.t. for parameter
κ = Θ(ddim/ε)Θ(ddim)

(a) Every cluster C ∈ Λ satisfies ufl(C) = Θ(κ)

(b)
∑

C∈Λ ufl(C) ∈ (1± ε) · ufl(X)

C1 C2

C3

Λ = {C1, C2, C3}

▶ Property (a): κ determines the target dimension
m = O(ε−2 log κ) = Õ(ε−2ddim)

▶ Property (b): (1 + ε)-apx
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Technical Overview

Step 1 Construct a partition Λ for X, s.t. for parameter
κ = Θ(ddim/ε)Θ(ddim)

(a) Every cluster C ∈ Λ satisfies ufl(C) = Θ(κ)
(b)

∑
C∈Λ ufl(C) ∈ (1± ε) · ufl(X)

Step 2 ufl(π(X)) ≥
∑

C∈Λ ufl(π(C))− ε · ufl(X)
▶ Property (b) carries over to the target space

Step 3
∑

C∈Λ ufl(π(C)) ≥ (1− ε)
∑

C∈Λ ufl(C)
▶ Apply k-median results in [MMR19] to every cluster C ∈ Λ
▶ Target dimension m = O(ε−2 log κ) suffices

Step 4 Apply property (b)
∑

C∈Λ ufl(C) ≥ ufl(X)
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Our Decomposition Procedure



Hierarchical Decomposition [Tal04]

▶ A generalization of randomly shifted quadtree to doubling
metrics

C

H

▶ Node ↔ cluster, children ⊆ parent
▶ Root: X
▶ Leaves: singletons
▶ Level i: diameter Θ(2i)

▶ Each node (cluster) has 2O(ddim) child nodes (clusters)
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Cutting Probability

x y

Cx Cy

Cutting probability [Tal04]: ∀x, y ∈ X,

Pr
H
[x, y are in different clusters at level i] ≤ O(ddim) · dist(x, y)/2i

Badly-cut pair [CFS21]: say (x, y) is badly cut, if x, y are in
different clusters at level log(ε−1ddim · dist(x, y))
▶ Pr[(x, y) is badly cut] ≤ O(ε)
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Property (a): Bottom-up Construction

Property (a): Every cluster C ∈ Λ satisfies ufl(C) = Θ(κ)

Given threshold κ = Θ(ddim/ε)O(ddim), find the lowest level
“heavy cluster” (ufl(C) ≥ κ) in a bottom-up manner

H
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Property (a): Bottom-up Construction
Property (a): Every cluster C ∈ Λ satisfies ufl(C) = Θ(κ)

Given threshold κ = Θ(ddim/ε)O(ddim), find the lowest level
“heavy cluster” (ufl(C) ≥ κ) in a bottom-up manner

C1 C2C3

H

C1
C2

C3

Λ = {C1, C2, C3}

▶ Every cluster C ∈ Λ satisfies κ ≤ ufl(C) ≤ 2O(ddim)κ
▶ Previous top-down construction [CLMS13]: polylog(n) upper

bound
▶ Extra log log n factor in the target dimension
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Property (b): Proof Idea

Property (b):
∑
C∈Λ

ufl(C)︸ ︷︷ ︸
local

≤ (1 + ε) · ufl(X)︸ ︷︷ ︸
global

Idea: adding extra facilities to F ∗ to serve each C ∈ Λ locally

▶ F ′ := F ∗ ∪ (
⋃

C∈Λ NC︸︷︷︸
a net on C

)

▶ Connection cost: ∀C ∈ Λ, ∀x ∈ C,
dist(x, F ′ ∩ C) ≤ (1 + ε) dist(x, F ∗)

▶ Opening cost: |F ′| − |F ∗| ≤ ε
∑

C∈Λ ufl(C)
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Property (b): Connection Cost

Goal: dist(x, F ′ ∩ C) ≤ (1 + ε) dist(x, F ∗)

C

x

Let F ∗ be the optimal solution for X and assume F ∗ ⊆ X for
simplicity
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Property (b): Connection Cost

Goal: dist(x, F ′ ∩ C) ≤ (1 + ε) dist(x, F ∗)

C

x
F ∗(x)

If F ∗(x) ∈ C, then ✓
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Property (b): Connection Cost

Goal: dist(x, F ′ ∩ C) ≤ (1 + ε) dist(x, F ∗)

C

x

F ∗(x)

What if F ∗(x) /∈ C?
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Property (b): Connection Cost
Goal: dist(x, F ′ ∩ C) ≤ (1 + ε) dist(x, F ∗)

C

x

F ∗(x)

Key observation: separation property

▶ Badly-cut pair: say (x, y) is badly cut, if x, y are in different
clusters at level log(ε−1ddim · dist(x, y))

▶ Separation property: if (x, F ∗(x)) is not badly cut, then
x ∈ C, F ∗(x) /∈ C =⇒ dist(x, F ∗(x)) ≥ ε · diam(C)
▶ An ε · diam(C)-net NC suffices
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Property (b): Opening Cost

Goal: |F ′| − |F ∗| ≤ ε
∑

C∈Λ ufl(C)

C

x

F ∗(x)
u

▶ |NC | is small: |NC | ≤ (1/ε)O(ddim) ≤ εκ ≤ ε · ufl(C)

▶ |F ′| − |F ∗| =
∑

C∈Λ |NC | ≤ ε
∑

C∈Λ ufl(C)
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Eliminate Badly-Cut Pairs

Remaining issue: what if (x, F ∗(x)) is badly-cut?

Prior solution [CFS21]
▶ Move x to F ∗(x), creating a new instance X ′

▶ Algorithmically, only feasible to eliminate badly-cut pairs
(x, F0(x)) for some approximation solution F0

▶ X ′ is random (randomness comes from H)

▶ Hard to deal with remaining badly-cut pairs (x, F ∗(x))

Our approach: modify H instead of X

▶ At each level, force close points to be clustered together

▶ Construct Λ accordingly

▶ Can still apply cutting probability to handle remaining
badly-cut pairs
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Thank you!


