Near-Optimal Dimension Reduction for Facility
Location

Lingxiao Huang * Shaofeng Jiang T Robert Krauthgamer
Di Yue f

June 2025

*Nanjing University
tPeking University
HWeizmann Institute of Science

1/22

Dimension Reduction

Challenge: curse of dimensionality

Solution: dimension reduction
» Goal: find a mapping 7: R¢ — R™, where m < d

» Example: Johnson-Lindenstrauss transform

Dimension reduction in algorithm design

(1) Embed the high-dimensional data to a low-dimensional space:

X cRYS (X)) CR™
(2) Compute the problem on the low-dimensional data 7(X)
(3) Map the solution back to X

2/22

Dimension Reduction

Johnson-Lindenstrauss Lemma [JL84]

There exists a random map 7: R? — R™ for m = O(¢~2logn),
such that for every n-point set X C R?, w.h.p.

Ve,ye X, ln(x) —7(y)l € A +e)llz -yl

3/22

Dimension Reduction

Johnson-Lindenstrauss Lemma [JL84]

There exists a random map 7: R? — R™ for m = O(¢~2logn),
such that for every n-point set X C R?, w.h.p.

Ve,ye X, n(z) —n(y)| € A xe)lz -yl
Good properties: linear, data oblivious

» Linear: m: z — \/—%Gaz (G is the Gaussian matrix)

P> Data oblivious: many applications in streaming
Limitations: target dimension m = O(c2logn) is tight [LN17]

» TSP in R®U°2™) does not admit a PTAS [Tre00]

> Streaming MST in R®(°8™) requires Q(1/n) bits [CCJ+23]

3/22

Doubling Dimension
Going beyond O(e~2logn): seek dependence on the intrinsic
dimension of datasets
» High ambient dimension vs low intrinsic dimension

» Points in a linear subspace
» Points with sparse vector representation

» Doubling dimension ddim(X) [GKLO3]: minimum ¢ > 0, such
that every ball in X can be covered by at most 2¢ balls of half
the radius

» If | X| =n, then ddim(X) < logn

4/22

Dimension Reduction Meets Doubling Dimension

Goal: refine JL lemma, such that m = m(e, ddim(X))?
> Remains open
» Not possible for linear maps [INO7]

5/22

Dimension Reduction Meets Doubling Dimension

Goal: refine JL lemma, such that m = m(e, ddim(X))?
> Remains open
» Not possible for linear maps [INO7]

Goal: JL dimension reduction for specific problems, such that

m = m(e,ddim(X)) and opt(m(X)) € (1 £ ¢)opt(X)

> A weaker requirement than preserving pairwise distances

5/22

Dimension Reduction for Specific Problems

Problems Apx. Target Dimension Ref.
Max-Cut 14+e O(?) CJK23
k-Median/Means 1+e O(e2logk) MMR19
k-Subspace Apx. 14+e¢ O(e3k?) CW25
Nearest Neighbor 1+e O(e2ddim) INO7
k-Center Clustering 1+¢ O(e %(ddim + logk)) JKS24
MST 1+¢e O(s?(ddim + loglogn)) NSIZ21
UFL O(1) O(ddim) NSIZ21
UFL 14+¢e¢ O(e2ddim) This work

6/22

Uniform Facility Location (UFL)
Input: n-point set X c R?

Objective: find a facility set F' € R?, to minimize

cost(X, F) := |F| + Z dist(z, F')
reX

Optimal value: ufl(X) := minppa cost(X, F)

7/22

Uniform Facility Location (UFL)
Input: n-point set X c R?

Objective: find a facility set F' € R?, to minimize

cost(X, F) := |F| + Z dist(z, F')
reX

Optimal value: ufl(X) := minppa cost(X, F)

Problem (Dimension reduction for UFL)

Given € € (0,1), decide a target dimension m = m(e, ddim(X)),
such that w.h.p. ufl(7(X)) € (1 £ ¢) ufl(X)

7/22

Main Result: Dimension Reduction

Theorem (Dimension reduction for UFL)

Consider m = O(s~2ddim). Then for every finite X C R? with
ddim(X) < ddim,

Priufi(7(X)) € (1 £¢)ufl(X)] > 0.99

8/22

Main Result: Dimension Reduction

Theorem (Dimension reduction for UFL)

Consider m = O(s~2ddim). Then for every finite X C R? with
ddim(X) < ddim,

Priufi(7(X)) € (1 £¢)ufl(X)] > 0.99

» |Improvements over previous results
> [NSIZ21]: O(1)-apx, target dimension m = O(ddim)
> [MMR19]: (1 + €)-apx, target dimension m = O(s 2 logn)

» Handles a regime between low and high dimension

» Data: low doubling dimension
> Facilities: high dimension

8/22

Corollary: Streaming Algorithm

Corollary (Streaming algorithm for UFL)

There is a streaming algorithm that, given as input a set X C [A]?
presented as a stream, and an upper bound ddim, uses space

O(d - polylog(A) + (¢~ log A)?(4dim)y and outputs w.h.p a

(14 €)-apx to ufl(X).

9/22

Corollary: Streaming Algorithm

Corollary (Streaming algorithm for UFL)

There is a streaming algorithm that, given as input a set X C [A]?
presented as a stream, and an upper bound ddim, uses space

O(d - polylog(A) + (¢~ log A)?(4dim)y and outputs w.h.p a

(14 €)-apx to ufl(X).

» The first streaming algorithm for UFL that utilize the
doubling dimension (generalization of [CLMS13])

» Break the Q(y/n) barrier in [CJK+422]

9/22

Main Result: PTAS

Theorem (PTAS for UFL)
There exists a randomized algorithm that computes a
(1 +)-apprximation for UFL in time (2'd + 22") - O(n), for

m' = O(ddim(X) log(ddim(X) /5))

10/22

Main Result: PTAS

Theorem (PTAS for UFL)
There exists a randomized algorithm that computes a
(1 +)-apprximation for UFL in time (2'd + 22") - O(n), for

m' = O(ddim(X) log(ddim(X) /5))

» Facilities are allowed to be picked from the ambient space R¢

> [CFS21]: PTAS for UFL in time -d-O(n), with
facilities restricted to the dataset

220(ddim2)

10/22

Technical Overview

Theorem (Dimension reduction for UFL)

Consider m = O(s~2ddim). Then for every finite X C R? with
ddim(X) < ddim,

Priufl(m(X)) € (1 £¢)ufl(X)] > 0.99

11/22

Technical Overview

Theorem (Dimension reduction for UFL)
Consider m = O(s~2ddim). Then for every finite X C R? with
ddim(X) < ddim,

Priufl(m(X)) € (1 £¢)ufl(X)] > 0.99

» Easy direction: ufl(7(X)) < (1 +¢)ufl(X)
> Let F* be the optimal solution for X, then 7(F™*) is a feasible

solution for m(X)
» ufl(r(X)) < cost(n(X), 7(F*)) < cost(X, F*) = ufl(X)
» Suffices to preserve the cost of one solution

11/22

Technical Overview

Theorem (Dimension reduction for UFL)
Consider m = O(s~2ddim). Then for every finite X C R? with
ddim(X) < ddim,

Priufl(m(X)) € (1 £¢)ufl(X)] > 0.99

» Easy direction: ufl(7(X)) < (1 +¢)ufl(X)
> Let F* be the optimal solution for X, then 7(F™*) is a feasible

solution for m(X)
» ufl(r(X)) < cost(n(X), 7(F*)) < cost(X, F*) = ufl(X)
» Suffices to preserve the cost of one solution

» Hard direction: ufl(w(X)) > (1 —¢) ufl(X)
» Optimal solution F* for 7(X) is random
» Need to preserve the cost of all solutions
» Idea: metric decomposition

11/22

Technical Overview: Decomposition

Construct a partition A for X, s.t. for parameter
k = O(ddim /¢)®ddim)

(a) Every cluster C' € A satisfies ufi(C) = O(k)
(b) Dceaufl(C) € (1 £¢) - ufl(X)

@ @

Cs
A ={Cy,Cy,Cs}
» Property (a): & determines the target dimension
m = O(e?log k) = O(¢2ddim)
» Property (b): (1 + &)-apx

12/22

Technical Overview

Step 1 Construct a partition A for X, s.t. for parameter
Kk = O(ddim /g)Oddim)
(a) Every cluster C € A satisfies ufl(C') = O(k)
(b) D ceaufi(C) € (1 £¢) - ufi(X)

Step 2 ufl(7(X)) > > e ufl(7(C)) — € - ufl(X)

> Property (b) carries over to the target space

Step 3 D cea ufl(m(C)) = (1 =€) 2 pen ull(C)
> Apply k-median results in [MMR19] to every cluster C € A
> Target dimension m = O(c¢~2log k) suffices

Step 4 Apply property (b) > ca ufl(C) > ufi(X)

13/22

Our Decomposition Procedure

Hierarchical Decomposition [Tal04]

» A generalization of randomly shifted quadtree to doubling
metrics

H

» Node < cluster, children C parent

» Root: X
P |eaves: singletons
> Level i: diameter ©(2¢)

» Each node (cluster) has 20(ddim) child nodes (clusters)

15/22

Cutting Probability

Cutting probability [Tal04]: Vz,y € X,

]E;tr[x,y are in different clusters at level i] < O(ddim) - dist(z, y)/2"

16/22

Cutting Probability

Cutting probability [Tal04]: Vz,y € X,
]E;tr[x,y are in different clusters at level i] < O(ddim) - dist(z, y)/2"

Badly-cut pair [CFS21]: say (z,y) is badly cut, if z,y are in
different clusters at level log(¢~'ddim - dist(z, y))

» Pr[(z,y) is badly cut] < O(e)

16/22

Property (a): Bottom-up Construction

Property (a): Every cluster C' € A satisfies ufl(C) = O(k)

Given threshold £ = ©(ddim/e)?(ddim) find the lowest level
“heavy cluster” (ufl(C') > k) in a bottom-up manner

H

17/22

Property (a): Bottom-up Construction

Property (a): Every cluster C' € A satisfies ufl(C') = O(k)

Given threshold £ = ©(ddim/e)?(ddm) find the lowest level
“heavy cluster” (ufl(C) > k) in a bottom-up manner

17/22

Property (a): Bottom-up Construction

Property (a): Every cluster C' € A satisfies ufl(C') = O(k)

Given threshold £ = ©(ddim/e)?(ddm) find the lowest level
“heavy cluster” (ufl(C) > k) in a bottom-up manner

17/22

Property (a): Bottom-up Construction

Property (a): Every cluster C' € A satisfies ufl(C) = O(k)

Given threshold £ = ©(ddim/g)?(ddm) find the lowest level
“heavy cluster” (ufl(C') > k) in a bottom-up manner

17/22

Property (a): Bottom-up Construction

Property (a): Every cluster C' € A satisfies ufl(C') = ©(k)

Given threshold x = ©(ddim/)?(d4m) find the lowest level
“heavy cluster” (ufl(C') > k) in a bottom-up manner

A ={C1,Cy,C3}

17/22

Property (a): Bottom-up Construction
Property (a): Every cluster C' € A satisfies ufl(C') = O(k)

Given threshold x = ©(ddim/)?(ddim) find the lowest level
“heavy cluster” (ufl(C') > k) in a bottom-up manner

A ={C1,Cy,C3}

» Every cluster C' € A satisfies = < ufl(C) < 20(ddim),
» Previous top-down construction [CLMS13]: polylog(n) upper
bound
» Extra loglogn factor in the target dimension
17/22

Property (b): Proof Idea

Property (b): ufl(C) < (1+¢)-ufl(X)
perty OEG; ufl(X)

N , global
local

Idea: adding extra facilities to F'* to serve each C' € A locally
> F,::F*U(UCGA N¢)

anetonC
» Connection cost: VC € A,Vx € C,
dist(z, F' N C) < (14 ¢) dist(z, F™*)
» Opening cost: |F'| — |F*| <&} cpufl(C)

18/22

Property (b): Connection Cost

Goal: dist(z, F' N C) < (1 + ¢) dist(z, F*)

C

Let F* be the optimal solution for X and assume F* C X for
simplicity

19/22

Property (b): Connection Cost

Goal: dist(z, F' N C) < (1 + ¢) dist(z, F*)

C

If F*(z) € C, then v/

19/22

Property (b): Connection Cost

Goal: dist(z, F' N C) < (1 + ¢) dist(z, F*)

C

What if F*(z) ¢ C?

19/22

Property (b): Connection Cost
Goal: dist(z, F' N C) < (1 + ¢) dist(z, F*)

C

Key observation: separation property
» Badly-cut pair: say (z,y) is badly cut, if z,y are in different
clusters at level log(s~ddim - dist(z, y))
» Separation property: if (z, F"*(x)) is not badly cut, then
x € C, F¥(z) ¢ C = dist(z, F*(z)) > ¢ - diam(C)
> An ¢ - diam(C)-net N¢ suffices

19/22

Property (b): Connection Cost
Goal: dist(z, F' N C) < (1 + ¢) dist(z, F*)

C

Key observation: separation property
» Badly-cut pair: say (z,y) is badly cut, if z,y are in different
clusters at level log(s~ddim - dist(z, y))
» Separation property: if (z, F"*(x)) is not badly cut, then
x € C, F¥(z) ¢ C = dist(z, F*(z)) > ¢ - diam(C)
> An ¢ - diam(C)-net N¢ suffices

19/22

Property (b): Opening Cost

Goal: |F'| — [F*| < e nep ufl(C)

C

()

> |Ng|is small: |[Ng| < (1/¢)CWdim) < o < ¢ ufl(C)
> [F'| = [F"] = Xgen INc| <€ iceaufl(C)

20/22

Eliminate Badly-Cut Pairs

Remaining issue: what if (x, F*(x)) is badly-cut?

Prior solution [CFS21]
» Move = to F*(x), creating a new instance X’

P Algorithmically, only feasible to eliminate badly-cut pairs
(z, Fo(x)) for some approximation solution Fy

» X' is random (randomness comes from H)

» Hard to deal with remaining badly-cut pairs (x, F*(x))

21/22

Eliminate Badly-Cut Pairs
Remaining issue: what if (x, F*(x)) is badly-cut?

Prior solution [CFS21]
» Move = to F*(x), creating a new instance X’

P Algorithmically, only feasible to eliminate badly-cut pairs
(z, Fo(x)) for some approximation solution Fy

» X' is random (randomness comes from H)

» Hard to deal with remaining badly-cut pairs (x, F*(x))

Our approach: modify H instead of X
» At each level, force close points to be clustered together
» Construct A accordingly

» Can still apply cutting probability to handle remaining
badly-cut pairs

21/22

Thank you!

